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Abstract

We report in this paper analytical results on the optimal design of two-dimensional all metallic sandwiches having lightweight cellular
cores subjected to laminar forced convection at fixed pumping power. Various types of core topology are exploited, such as square cells
and equilateral triangular cells. The intersection-of-asymptotes method is employed for the optimal design, whilst the fin analogy model
is used to account for the contribution of solid conduction. To check the validity and accuracy of the analytical model, the predictions
are compared with those obtained using the method of computational fluid dynamics (CFD). The structural parameters of the sandwich
optimized include overall length and cell size, with the latter dependent upon porosity and the number of cells along sandwich height.
The parameters that may influence the optimally designed sandwich structure are discussed, including overall structural dimensions,
pumping power, solid conductivity, and coolant properties.
Crown Copyright � 2006 Published by Elsevier Ltd. All rights reserved.

Keywords: Two-dimensional cellular metals; Laminar forced convection; Optimization; CFD
1. Introduction

Ultra-lightweight cellular metallic materials have
attracted increasing interests from academia and industry
alike, for their superior mechanical, thermal, acoustic and
other physical properties. These novel materials have either
random or periodic cellular morphologies and are highly
porous, with the porosity level typically exceeding 70%
[1]. Examples include aluminum foams and stainless steel
lattice block materials. Of particular interest is the under-
standing and quantification of structure-property relation-
ships for these materials targeting a variety of different
applications: structural load bearing, impact energy
absorption, heat dissipation, sound attenuation, morphing,
etc. [1,2]. Also, those having open channels (flow through
0017-9310/$ - see front matter Crown Copyright � 2006 Published by Elsevie

doi:10.1016/j.ijheatmasstransfer.2006.11.026

* Corresponding author. Present address: MOE Key Laboratory of
Strength and Vibration, School of Aerospace, Xian Jiaotong University,
Xian 710049, PR China. Tel.: +86 29 82665600; fax: +86 29 82668234.

E-mail address: tjlu@mail.xjtu.edu.cn (T.J. Lu).
topologies) have emerged as excellent candidates for
multi-functional applications [2]. Thus, how to obtain the
required morphology using multi-objective, multi-parame-
ter optimization techniques becomes a challenge.

Amongst different types of cellular material, the simplest
are two-dimensional (2D) arrays of polygons that pack to
fill a plane area, often referred to as the 2D cellular mate-
rials or honeycombs. All-metallic lightweight sandwich
structures with 2D prismatic cores (Fig. 1) have the poten-
tial for simultaneous load bearing and active cooling [1].
The load bearing characteristics of these structures have
been well-documented in the open literature, demonstrat-
ing the structural efficiency benefits of various topologies.
Continuous channels of these structural sandwiches allow
internal fluid transport, enabling simultaneous active cool-
ing [2]. A comprehensive assessment of these cooling capa-
bilities, involving comparisons between different core
topologies, is addressed in this paper. The focus is placed
on optimizing the cellular morphology as well as overall
sandwich dimensions for maximum thermal performance.
r Ltd. All rights reserved.
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Nomenclature

cp specific heat at constant pressure [(kJ/(kg K)]
Dh cell hydraulic diameter [m]
f friction factor [–]
h(z) local heat transfer coefficient [W/m2 K]
�hðzÞ overall heat transfer coefficient [W/m2 K]
H overall height [m]
k thermal conductivity [W/(m K)]
l cell size (shown in Fig. 1) [m]
L overall length [m]
N overall cell number (N ¼ NHNWÞ [–]
NH cell number along the height [–]
NW cell number along the width [–]
Nu(z) local Nusselt number [–]
NuðzÞ overall Nusselt number [–]
P pumping power [W]
DP pressure drop [Pa]
Pr Prandtl number [–]
q00(z) local heat flux [W/m2]
Q total heat transfer [W]
R overall thermal resistance [K/W]
ReDh

Reynolds number based on cell size [–]
Rez Reynolds number based on longitudinal posi-

tion [–]

t cell wall thickness (shown in Fig. 1) [m]
T temperature [K]
Tw constant wall temperature [K]
U mean coolant velocity in cells [m/s]
Um mean coolant velocity upstream [m/s]
W overall width [m]
x; y; z Cartesian coordinates (shown in Fig. 2) [–]

Greek symbols

e porosity [–]
/ surface area density [1/m]
W shape factor [–]
l dynamic viscosity [kg/(m s)]
m kinematic viscosity [m2/s]
q density [kg/m3]
~q relative density [–]
s sheer stress [Pa]
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Fig. 1. Different stacking orders for 2D cellular solids having: (a)–(c) rectangular cells; (d)–(f) equilaterally triangular cells.
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Fig. 2. Schematic of a 2D cellular sandwich heat sink cooled by forced
convection; coolant flows along the z-axis.
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There is a growing literature on the transport of heat
across 2D cellular metallic structures. Using a modified
fin analogy model, Lu [3] evaluated the performance of
2D cellular metals with hexagonal cells subjected to forced
convection, and obtained the optimal cell morphology for
maximum overall heat transfer rate. Built upon this
approach, Gu et al. [4] developed analytical models and
dimensionless indices that enable simultaneous evaluation
of the load bearing and heat dissipation capabilities of
2D cellular metals having square, triangular and hexagonal
cells. They employed a two-stage optimization to identify
cell morphologies that optimize the structural and heat
transfer performance for a specified porosity level. In addi-
tion to these analytical approaches, Kumar and McDowell
[5] used a finite element method to analyze steady-state
convective heat transfer through 2D cellular metals having
rectangular cells, and explored the optimized morphology
of functionally graded cellular structures. Using the finite
difference method for steady-state heat transfer and a
multi-objective decision support model, Seepersad et al.
[6] designed both periodic and functionally graded 2D
cellular structures with desirable structural and thermal
attributes.

The works cited above are valuable in exploring the rela-
tionship between cellular structure and thermal perfor-
mance when the overall length of a 2D cellular material/
structure is relatively large compared with its cell size, since
they only considered the fully developed case whereby the
entrance as well as exit effects can be neglected. However,
with the increasingly compact requirement of heat sinks
designed with 2D cellular metals, developing temperature
and flow fields prevail and must be properly accounted
for in the design process. In this paper, to address this defi-
ciency, we adopt an intersection-of-asymptotes method to
explore the interplay between the structure of a 2D cellular
metal and its thermal performance, with the consideration
of developing flow/temperature fields an essential feature
of our work. This method was first developed by Bejan
and Sciubba [7] to optimize the plate spacing for an array
of parallel plates cooled by forced convection. Later, Yil-
maz et al. [8] applied the method to optimize the shape
and dimension of a single duct with constant wall temper-
ature cooled by forced laminar flow. More recently, Muz-
ychka [9] used the method to determine the optimal cell
size of 2D cellular metals cooled by forced convection,
which is quite close to the current work. However, Muz-
ychka’s work is far from solving the problem due to two
simplifying assumptions made: (1) cell wall thickness was
neglected; as a result, the porosity e, an important param-
eter describing any cellular structure, was missed out, and
hence the only geometrical parameter that affects the out-
come of the optimization is the cell size; (2) thermal con-
duction resistance in solid walls is neglected; therefore,
Muzychka’s analysis is restricted to 2D cellular metals hav-
ing very high solid conductivity.

In the present work, to consider both developing flow
effects and thermal conduction in solid walls, we integrate
the fin analogy model [3] into the intersection-of-asymp-
totes method [7]. In addition, the cellular structure of a
sandwich heat sink is fully characterized and the effects
of various structural parameters on heat sink performance
are discussed. The paper is laid out as follows. Section 2
presents the correlations of various topology parameters.
In Section 3, the intersection-of-asymptotes method is
combined with the fin analogy model to analyze 2D cellular
metals. Comparisons between numerical results from CFD
(FLUENTTM) calculations and the present analytical pre-
dictions on both optimal structural parameters and maxi-
mum total heat transfer rate are given in Section 4.
Section 5 discusses in detail the effects of geometrical
parameters, solid conductivity and coolant properties on
the optimal structure of 2D cellular metals having either
square or equilateral triangular cells.

2. Topology

For a 2D all-metallic sandwich heat sink with periodic
cellular core and thin facesheets made of the same metal,
besides its overall dimensions (H �W � L), the following
parameters characterize its cross-sectional topology:

(1) Cell shape (square, triangular, etc.).
(2) Stacking order [4], which depends mainly on the fab-

rication method. Fig. 1 gives different stacking orders
for 2D cellular metals having square cells (Fig. 1a–c)
and equilateral triangular cells (Fig. 1d–f). Fig. 1a
and d can be fabricated using the extrusion technol-
ogy [10]; Fig. 1b, c, e and f can be fabricated using
the crimping and stamping method [11]. Note that
Fig. 1a can also be fabricated using the brazing
method [12].

(3) Porosity e, defined as the ratio of void volume to total
volume of the cellular material. In the literature, the
notion of relative density ~q is often used, which is
the density of the cellular material, q*, divided by
the density of the solid from which the cell walls are
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made, qs. The porosity and relative density are simply
related as ~q ¼ 1� e.

(4) l/H, which is the ratio between cell size and overall
sandwich height; or equivalently, t/H, which is the
ratio between cell-wall thickness and overall sand-
wich height.

For simplicity, the present analysis is restricted to 2D
cellular metals with all the cells having uniform wall thick-
ness (Fig. 1a and d). The analysis can nonetheless be
extended straightforwardly to cells having double- or even
treble-wall thickness, as demonstrated in [3].

For a 2D cellular metal with square cells (Fig. 1a), we
have

l=H ¼ 1� ðNH � 1Þt=H
NH

ð1Þ

Correspondingly, the porosity is given by

e ¼ NHðl=HÞ2

l=H þ t=H
ð2Þ

Similarly, for a 2D cellular metal having equilateral trian-
gular cells (Fig. 1d)

l=H ¼ 2ffiffiffi
3
p 1� ðN H � 1Þt=H

NH

ð3Þ

e ¼
ffiffi
3
p

4
NHðl=HÞ2

1
2
l=H þ 2ffiffi

3
p t=H

ð4Þ

Therefore, for predefined cell shape and stacking order,
four geometric parameters defining the cross section:
porosity e, cell number along sandwich height NH, t/H,
and l/H, can be obtained from the above relationships with
any two of them given.

3. Analysis

Consider the problem shown in Fig. 2. Coolant, with
inlet temperature T f;in, is driven by a pumping power P

to cool down a 2D cellular-cored sandwich heat sink.
One substrate of the sandwich is kept at uniform tempera-
ture T w ð> T f;inÞ, whilst the other substrate and two sides
of the sandwich are thermally insulated. We assume that
all cells are subjected to the same pressure drop Dp, which
implies that the flow velocities in all the cells are equal. The
velocity in each cell, U, is correlated with Um by

U ¼ Um=e ð5Þ

The pumping power P needed to drive the coolant through
is expressed as

P ¼ DpHWU m ð6Þ

By tailoring the cellular structure of the sandwich heat
sink, the aim of the optimization is to maximize its total
heat transfer rate per unit temperature difference; or, equiv-
alently, to minimize its overall thermal resistance, defined
as

R ¼ T w � T f;in

Q
ð7Þ

where Q is the total amount of heat dissipated.
The analysis described below is analogous to the method

employed by Bejan and Sciubba [7].

3.1. Limit I: fully developed case (Dh ? 0 or L ?1)

When each cell is sufficiently slender, the flow is fully
developed along L. Meanwhile, the temperatures at the
outlet in both the cell wall and fluid are approaching Tw.
Therefore, the total heat transfer is

QI ¼ qfcpUmHW ðT w � T f;inÞ ð8Þ

For fully developed flow, the pressure drop in each cell is

fReDh
¼ 64W ð9Þ

where W is the shape factor, with W = 0.8875, and 0.83125
for square and equilateral triangle based on [13], respec-
tively, and

f ¼ Dp
L

Dh

1

qfU
2=2

ð10Þ

ReDh
¼ UDh

mf

ð11Þ

Combining Eqs. (6), (9)–(11), we have

U ¼ 1

32W

� �1=2

P 1=2 1

qfmf

� �1=2 Dh

e1=2H 1=2W 1=2L1=2
ð12Þ

By substituting Eq. (12) into Eq. (8), we can obtain

QI ¼
1

32W

� �1=2

P 1=2 q1=2
f cp

m1=2
f

Dhe1=2H 1=2W 1=2

L1=2
ðT w � T f;inÞ

ð13Þ

Finally, the overall thermal resistance R can be expressed
as

RI ¼
T w � T f;in

QI

¼ 32Wð Þ1=2 1

P 1=2

m1=2
f

q1=2
f cp

L1=2

Dhe1=2H 1=2W 1=2

ð14Þ
3.2. Limit II: boundary layer case (Dh ?1 or L ? 0)

In this case, the boundary layer that lines each surface
becomes ‘distinct’. The corresponding fluid flow and heat
transfer can be approximated by using the theory of
boundary layers [13].

For pressure loss

s

qfU
2=2
¼ 1:328Re�1=2

L ð15Þ
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Fig. 3. Two-step analysis in fin analogy model: (a) and (c) single-
corrugated walls without fins for square and triangular shaped cells; (b)
and (d) corrugated walls with fin attachments for square and triangular
shaped cells; local coordinate is n.
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where

s ¼ Dp
L

Dh

4
ð16Þ

ReL ¼
UL
mf

ð17Þ

Combining Eqs. (6), (15)–(17), we have

U ¼ 0:677P 2=5 1

q2=5
f m1=5

f

D2=5
h

e2=5H 2=5W 2=5L1=5
ð18Þ

For heat transfer in the boundary layer along a flat plate
with constant temperature, the local heat transfer coeffi-
cient can be calculated by

hðzÞ ¼ NuðzÞ kf

z
¼ 0:332

kf

z
Pr1=3Re1=2

z ð19Þ

The overall heat transfer coefficient averaged from z = 0
to z corresponding to the local heat transfer coefficient
Eq. (19) is

�hðzÞ ¼ 1

z

Z z

0

hðzÞdz ¼ 0:664
kf

z
Pr1=3Re1=2

z ð20Þ

For heat transfer in the boundary layer along a flat plate
with arbitrary temperature distribution Tw(z), the local
heat flux can be calculated by

q00ðzÞ ¼ hðzÞ
Z z

0

dT wðgÞ=dg

½1� ðg=zÞ3=4�1=3
dgþ hðzÞ½T wð0Þ � T f;in�

ð21Þ
3.2.1. Thermal conduction resistance in cell walls ignored

(ks ?1)

When the conduction resistance in cell walls is neglected
(ks ?1), the walls are isothermal with temperature Tw,
and the total heat transfer rate can be calculated as

QII ¼ �hLNCLðT w � T f ;inÞ ð22Þ
where �hL is the overall heat transfer coefficient averaged
from z = 0 to L calculated by Eq. (20); N is the overall cell
number; and C is the perimeter of each cell. Consequently,
the total heat transfer is

QII ¼ 0:546P 1=5 kfPr1=3

q1=5
f m3=5

f

D1=5
h L2=5NC

e1=5H 1=5W 1=5
ðT w � T f;inÞ ð23Þ

Correspondingly, the overall thermal resistance is

RII ¼
T w � T f;in

QII

¼ 1:832
1

P 1=5

q1=5
f m3=5

f

kf Pr1=3

e1=5H 1=5W 1=5

D1=5
h L2=5NC

ð24Þ
3.2.2. Thermal conduction resistance in cell walls included

(finite ks)

To address the effects of thermal conduction resistance
in solid walls, we adopt the popular fin analogy model
[3,4]. With the periodic unit of the cellular structure mod-
eled as a corrugated wall with fins, a two-step analysis is
employed: the transfer of heat across a corrugated wall
without fins is analyzed first; the contribution of the fins
is subsequently included separately (Fig. 3).

Heat transfer along a single-corrugated wall without fins
at axial position z is a one-dimensional conduction prob-
lem, with the convective heat by the coolant modeled as
a source term. With Eq. (21), the variation of temperature
T sðn; zÞ along the length of a single-corrugated wall is gov-
erned by

kst
o

2T sðn; zÞ
on2

� 2hðzÞ
Z z

0

oT sðn; gÞ=og

1� ðg=zÞ3=4
h i1=3

dgþ T sðn; 0Þ � T f;in

2
64

3
75

¼ 0 ð25Þ

Here, h(z) is the local heat transfer coefficient given by Eq.
(19), and n is the local coordinate along the corrugated wall
(Fig. 3), with

n ¼ 0; y ¼ 0;

n ¼ cH H ; y ¼ H

�
ð26Þ

where cH is the tortuous coefficient: cH = 1.0, and 1.155 for
square and equilateral triangle, respectively [4].

The boundary conditions are

ks
oT s

on ¼ 0; n ¼ 0;

T s ¼ T w; n ¼ cH H

(
ð27Þ

Eq. (25) is an integro-differential equation, which is
rather difficult to deal with. For simplicity, we replaceR z

0
oT sðn;gÞ=og
½1�ðg=zÞ3=4�1=3 dgþ T sðn; 0Þ by T sðn; zÞ so that Eq. (25) can

be simplified as

kst
o2T sðn; zÞ

on2
� 2hðzÞ½T sðn; zÞ � T f;in� ¼ 0 ð28Þ

To estimate the feasibility of the above approximation, the
second terms on the left hand sides of Eqs. (25) and (28),
which represent separately the accurate and estimated local
convective heat flux q00, are compared in Fig. 4. The cell
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wall temperature T sðn; zÞ, when n 6¼ cH H , is chosen as a
TANH profile along z, mimicking that calculated by using
the commercially available CFD code, FLUENTTM [12].
The results of Fig. 4 demonstrate that the simplification
leads to approximately 10% underestimation in the local
convective heat transfer, which is considered acceptable.

The solution to Eq. (28) with boundary conditions Eq.
(27) is given by

T sðn; zÞ ¼ T f ;in þ ðT w � T f ;inÞ
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hðzÞ=kst

p
n

� �
cosh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hðzÞ=kst

p
cH H

� � ð29Þ

The total amount of heat dissipated to the coolant per unit
length of the corrugated wall is

q1ðzÞ¼ kst
dT s

dn

����
n¼cH H

¼ðT w�T f ;inÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hðzÞkst

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hðzÞ=ðkstÞ

p
cH H

	 

ð30Þ

Solving for the exact solution of additional heat loss from
the fins is quite complicated. By introducing a parameter
cfin, which denotes the weight coefficient of fins on total
heat loss, an approximate solution considering the contri-
bution of fins can be obtained, which provides a good
approximation for the exact solution [3], as

qðzÞ¼ ð1þ cfinÞðT w�T f;inÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hðzÞkst

p
tanh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2hðzÞ=ðkstÞ

p
cH H

	 

ð31Þ

The weight coefficient cfin can be estimated by the surface
area ratio of fins to corrugated wall.

Finally, the total heat transfer rate from the heat sink
can be calculated by

QII ¼
Z L

0

½NWqðzÞ þ qwðzÞ�dz ð32Þ
where qw(z) is the heat flux into the coolant from the
remaining surface of the heated substrate, given by

qwðzÞ ¼ hðzÞðW � NWcH tÞðT w � T f;inÞ ð33Þ

Therefore, in the limit Dh ?1, the total heat transfer can
be obtained by combining Eqs. (31)–(33). The correspond-
ing overall thermal resistance is given by

RII ¼
T w � T f;in

QII

¼ T w � T f ;inR L
0
½N WqðzÞ þ qwðzÞ�dz

ð34Þ
3.3. Intersection of the two asymptotes

In the limit I, when Dh ? 0 (or L ?1), from Eq. (14),
we have

T w � T f ;in

QI

� L1=2

Dh

ð35Þ

This means that for fully developed flow, the overall ther-
mal resistance of the heat sink decreases with D�1

h for a
finite L [line (a) in Fig. 5a] or increases with L1/2 for a finite
Dh [line (a) in Fig. 5b].

For the limit II, when Dh ?1 (or L ? 0), results from
Eq. (34) are asymptotic to those from Eq. (24) when the
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solid conductivity tends to be infinity. With Eq. (24), as
N � HW e=D2

h and C � Dh, we have

T w � T f ;in

QII

� D4=5
h

L2=5
ð36Þ

which implies that for boundary layer flow, the overall
thermal resistance increases with D4=5

h for a finite L [line

(b) in Fig. 5a] or decreases with L�2/5 for a finite Dh [line
(b) in Fig. 5b].

Therefore, Dh (or L) can be optimized by intersecting
Eq. (14) with either Eq. (24) (for ks ?1) or Eq. (34)
(for low to medium ks). Since Dh is correlated with e
and NH, the latter is used in lieu of Dh in the analysis
below. From Eqs. (14), (24) and (34), it is found that
the optimal L, e, NH and the overall thermal resistance
are influenced by the following parameters: (1) overall
dimensions; (2) pumping power P; (3) solid conductivity
ks; (4) coolant properties.

There are generally three flow configurations in differ-
ent applications for a heat sink, which are fixed pumping
power, fixed pressure drop and fixed flow rate, depending
on how the heat sink is attached to the coolant network
[14]. In the above analysis, we particularly address the sit-
uation where the pumping power is fixed. This method
can nevertheless be extended to the other two situations
by replacing the correlations between velocity U and
pumping power P [Eqs. (12) and (18)] with those between
U and pressure drop or flow rate, respectively (see [14] for
detail).
4. Validation of the model

To examine the validity and accuracy of the solutions
obtained using the above analytical model, numerical
results obtained with FLUENTTM are used for compari-
son. In the numerical calculations, the periodic unit was
chosen as the calculation domain, with a flow developing
channel before the sample included to make sure the flow
across the core can approximate the condition of a fixed
pressure drop. The boundary conditions are similar to
those used in our previous paper [12] and are described
as follows:

(1) A velocity-inlet boundary condition with a uniform
value was assumed at the entrance of the inlet chan-
nel; and a pressure-outlet boundary condition with
zero gauge pressure was employed at the exit of the
sample cell duct.

(2) A constant heat flux boundary condition was
employed at the bottom face-sheet of the sample,
while the top and bottom walls of the flow developing
channel as well as the top face-sheet of the sample
were insulated.

(3) Symmetrical boundary conditions for all side surfaces
of the sample in the sample’s width direction were
employed.
(4) The inner surfaces of each cell were set as coupled
thermal conditions so that the heat exchange between
adjacent zones, belonging to the solid region and the
fluid region, respectively, can be calculated. In the
fluid side of these inner surfaces, non-slip boundary
condition was employed.

(5) A zero-shear boundary condition was employed at
the inner surface of the flow developing channel so
that the inclusion of the flow developing channel does
not affect the uniformity of velocity distribution
upstream the inlet of the sample.

It is difficult to obtain the optimal cell size numerically
as it is highly expensive to generate the geometries and
grids of different cross-sectional topologies. However,
because it is relatively straightforward to change sample
length, the optimal length calculated from the two methods
will be compared below. The cross-sectional topology con-
sidered in the numerical simulation is a 2D cellular sand-
wich structure of height H = 0.012 m, width W = 5H and
porosity 0.9; in addition, there are in total 6 identical
square cells arranged along the channel height (or, equiva-
lently, t = 0.12 mm and l = 1.9 mm). The solid conductiv-
ity is chosen as that of copper: ks = 401 W/m K. At the
inlet, the velocity of fluid (air) varies from 2 to 12 m/s, with
increasing step size of 0.25 m/s.

For a finite pumping power, coolant velocity varies
with increasing overall length and, correspondingly, the
overall thermal resistance also changes, as shown in
Fig. 6a. As it is computationally impossible to obtain con-
tinuous variation of overall length, the exact value of L/H
minimizing the overall thermal resistance cannot be deter-
mined numerically. However, a finite range of L/H, within
which the overall thermal resistance may achieve its min-
imum, can be obtained. For different pumping powers, the
numerically determined optimal values of L/H are com-
pared in Fig. 6b with those predicted by the intersec-
tion-of-asymptotes method. In Fig. 6c, the corresponding
values of minimum overall thermal resistance from CFD
calculations and intersection-of-asymptotes method are
compared.

From Fig. 6b it is seen that all the predictions for opti-
mal overall length fall into the CFD determined range, thus
demonstrating the feasibility of the present method in pre-
dicting the optimal geometries.

The results of Fig. 6c show that the predicted values of
minimum overall thermal resistance are nearly half those
of the CFD results. This is to be expected, for two rea-
sons. Firstly, in the fully developed flow limit, the assump-
tion that both the fluid and wall temperatures approach
Tw is valid when the duct is sufficiently long (much longer
than the present optimized length); furthermore, the lower
the solid conductivity, the longer the duct. Secondly, in
the developing flow limit, the boundary layers along joint
walls merge at the corner and, as the thickness of the
boundary layer grows in the longitudinal direction, the
boundary layers along opposite walls also merge. This
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suggests that the flow in the developing section of each cell
duct is not simply the summation of boundary layers
along each wall as simplified in the intersection-of-asymp-
tote method.

Although the model somewhat underestimates the over-
all thermal resistance, the predictions are qualitatively
accordant with CFD calculations, thus do not affect the
predictions on optimal structural parameters.
5. Results and discussion

5.1. Optimal overall length

In this section, the optimal overall length of a 2D cellu-
lar sandwich heat sink with square cells shown in Fig. 1a is
discussed. The coolant considered is air (properties given in
Table 1).



Table 1
Fluid properties

Parameters Unit Air Water

Density, qf kg/m3 1.225 998.2
Dynamic viscosity, lf kg/(m s) 1:7894� 10�5 0.001003
Kinematic viscosity, mf m2/s 1:4607� 10�5 1:0048� 10�6

Specific heat at constant pressure, cp J/(kg K) 1006.43 4182
Fluid thermal conductivity, kf W/(m K) 0.0242 0.6
Thermal diffusivity, af m2/s 1:963� 10�5 1:4373� 10�7

Prandtl number, Pr – 0.7441 6.99
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Firstly, with the cross-sectional dimensions (H =
0.012 m, W = 5H) and pumping power (P = 0.5 W) pre-
specified, the variation of optimal L/H and the correspond-
ing overall thermal resistance with different cross-sectional
topologies and different solid conductivities are presented
in Fig. 7, with Fig. 7a–e corresponding to ks = 1, 10, 100,
1000 W/m K and infinity, respectively.

The results of Fig. 7 demonstrate that, for a 2D cellular
structure with fixed cross-sectional topologies (fixed e and
NH), the optimal L decreases with increasing ks; for a cel-
lular structure with fixed ks, the optimal L increases with
increasing cell size (decreasing NH for a finite e, or increas-
ing e with NH fixed).

The variation of overall thermal resistance with different
ks and different cross-sectional topologies is quite compli-
cated. Generally, for a 2D cellular structure with certain
cross-sectional topology, the enhancement of ks decreases
the overall thermal resistance. In low ks regimes (Fig. 7a
and b), when e is fixed, the overall thermal resistance
increases as NH is increased. In medium ks regions
(Fig. 7c and d), for a fixed e, the overall thermal resistance
first slightly decreases, then increases as NH is increased; in
other words, there exists an optimal NH. The optimal NH

increases with ks and, for a finite ks, the optimal NH

decreases with increasing e. In the ideal limit that ks ?1
(Fig. 7e), the overall thermal resistance decreases slightly
with NH. Again, from Fig. 7a–e, we can find that when
NH is fixed, there also exists an optimal e in low and med-
ium ks regimes, which increases with increasing ks and for a
finite ks, increases with decreasing NH.

The phenomena observed in Fig. 7a–e clearly demon-
strate the role of coupled conduction–convection mecha-
nism in the process of heat dissipation across 2D cellular
structures, as elucidated below.

From Fourier’s law of conduction, the conduction pro-
cess is related to cell-wall thickness t and solid conductivity
ks. Increasing either t or ks enables more heat to be con-
ducted. The cell-wall thickness t is a function of NH and
e: either increasing NH with e unchanged or increasing e
with NH unchanged will reduce t.

On the other hand, from Newton’s law of cooling, the
convection process is related to the surface area density /
of the structure and the convective heat transfer coefficient
�h. Enhancing either / or �h enables more heat to be con-
vected. The surface area density / is a geometric parameter
that depends uponNH and e: either increasing NH with e
unchanged or increasing e with NH unchanged will increase
/. The convective heat transfer coefficient �h, for laminar
duct flow, depends on different thermal boundary condi-
tions and the non-dimensional longitudinal position of
the duct exit, L� ¼ L=ðDhReDh

PrÞ. Mathematically, the rela-
tionship is highly complicated [13], which is the reason why
we adopt the intersection-of-asymptotes method in this
paper. For further discussion, the following important con-
clusions for convective heat transfer in laminar duct flow
are noted: (1) for a certain thermal boundary condition,
�h decreases with the increase of L�; (2) uniform heat flux
and isothermal walls are separately the high and low limit
cases in overall convective heat transfer coefficient of the
more general thermal boundary conditions.

It has been established that an increase in convection by
increasing / leads to a decrease in conduction as t is neces-
sarily decreased, which indicates that there exists a balance
between convection and conduction processes. From the
thermal resistance point of view, reducing the largest ther-
mal resistance will dramatically enhance the overall heat
transfer. In other words, the optimal NH and optimal e
observed in Fig. 7 happen when the convective and conduc-
tive resistances are comparative. Both increase with
increasing ks as this reduces the conductive resistance (with
the increase of ks, although the optimal L decreases, which
contributes to a decrease in convective resistance due to a
decrease in L* and consequently an increase in �h , this dec-
rement is relatively small compared to the decrease in con-
ductive resistance). For a finite ks, the increase in e for a
finite NH leads to higher / and higher �h (smaller L*), caus-
ing a decrease in convective resistance; the conductive resis-
tance needs to be reduced correspondingly by increasing t

to make the convective and conductive resistances compar-
ative. Consequently, the optimal NH decreases as e is
increased. Similarly, the decrease of NH for a finite e leads
to a decrease in conductive resistance, so that the convec-
tive resistance needs to be reduced by increasing either �h
or /. Although �h increases with decreasing NH (smaller
L*), the decrease in convective resistance due to increase
in �h is relatively small in comparison with the decrease in
conductive resistance (due to increase in t), requiring there-
fore a higher /. As a result, the optimal e increases as NH is
decreased.

With H = 0.012 m and P = 0.5 W fixed, the variation of
optimal L/H and the corresponding overall thermal resis-
tance with different values of channel width W are given
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in Table 2. Here, NH = 6, e varies between 0.50 and 0.95,
and ks is chosen as 100 W/m K. Generally, when e is fixed,
both the optimal L/H and the overall thermal resistance
decrease as W is increased. On the other hand, W does
not influence optimal e.
Table 3 gives the variation of optimal L/H and corre-
sponding overall thermal resistance with different cross-sec-
tional dimensions, with the aspect ratio fixed at W = 5H
and the pumping power at P = 0.5 W. Again, NH = 6, e
varies between 0.50 and 0.95, and ks = 100 W/m K.



Table 2
Optimum heat sink length L/H and corresponding overall thermal resistance for square cells and selected values of heat sink width W and porosity e, with
H = 0.012 m, NH = 6, P = 10 W and ks = 100 W/m K; the working fluid is air (Pr ¼ 0:74)

W/H = 1 W/H = 3 W/H = 5 W/H = 7 W/H = 9

(L/H)opt R (L/H)opt R (L/H)opt R (L/H)opt R (L/H)opt R

e = 0.50 15.26 0.897 9.37 0.406 7.99 0.290 7.18 0.232 6.51 0.195
e = 0.55 16.38 0.848 10.04 0.383 8.58 0.274 7.53 0.217 6.96 0.184
e = 0.60 17.50 0.806 10.74 0.364 9.16 0.261 8.03 0.206 7.46 0.175
e = 0.65 18.66 0.770 11.45 0.348 9.77 0.249 8.57 0.197 7.80 0.166
e = 0.70 19.87 0.740 12.20 0.335 10.05 0.235 9.12 0.189 8.31 0.159
e = 0.75 21.18 0.715 13.01 0.324 10.73 0.228 9.74 0.183 8.86 0.154
e = 0.80 22.67 0.695 13.94 0.315 11.50 0.221 10.18 0.176 9.50 0.150
e = 0.85 24.49 0.682 15.08 0.309 12.45 0.217 11.02 0.173 10.09 0.146
e = 0.90 27.09 0.680 16.74 0.308 13.82 0.216 12.24 0.172 11.20 0.145

e = 0.95 32.26 0.704 20.02 0.320 16.55 0.225 14.67 0.179 13.43 0.151

Table 3
Optimum heat sink length L/H and corresponding overall thermal resistance for square cells and selected values of heat sink height H and porosity e, with
W = 5H, NH = 6, P = 10 W and ks = 100 W/m K; the working fluid is air (Pr ¼ 0:74)

H = 0.008 m H = 0.012 m H = 0.020 m H = 0.050 m H = 0.100 m

(L/H)opt R (L/H)opt R (L/H)opt R (L/H)opt R (L/H)opt R

e = 0.50 6.98 0.499 7.99 0.290 9.48 0.147 12.85 0.0433 16.19 0.0172
e = 0.55 7.50 0.471 8.58 0.274 10.16 0.139 13.79 0.0409 17.38 0.0162
e = 0.60 8.00 0.448 9.16 0.261 10.86 0.132 14.74 0.0389 18.57 0.0154
e = 0.65 8.54 0.428 9.77 0.249 11.59 0.126 15.72 0.0372 19.80 0.0148
e = 0.70 8.79 0.404 10.05 0.235 11.92 0.119 16.18 0.0351 20.39 0.0139
e = 0.75 9.38 0.391 10.73 0.228 12.72 0.115 17.26 0.0339 21.75 0.0135
e = 0.80 10.04 0.380 11.50 0.221 13.63 0.112 18.50 0.0330 23.30 0.0131
e = 0.85 10.88 0.373 12.45 0.217 14.76 0.110 20.02 0.0324 25.23 0.0129
e = 0.90 12.07 0.372 13.82 0.216 16.38 0.109 22.23 0.0323 28.00 0.0128

e = 0.95 14.46 0.387 16.55 0.225 18.62 0.114 27.15 0.0340 33.55 0.0133
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The results demonstrate that, with e fixed, the optimal L/H
increases as the overall cross-sectional dimensions increase,
whilst the overall thermal resistance decreases with in-
creasing the overall cross-sectional dimensions. Again,
the optimal e is not affected by various cross-sectional
dimensions.

Finally, the dependence of optimal L/H and corre-
sponding overall thermal resistance upon pumping power
is given in Table 4. The cross-sectional dimensions
(H = 0.012 m, W = 5H) are fixed; NH = 6, e varies between
Table 4
Optimum heat sink length L/H and minimum thermal resistance for square cel
W = 5H, NH = 6 and ks = 100 W/m K; the working fluid is air (Pr ¼ 0:74)

P = 0.1 W P = 0.2 W P = 0.5 W

(L/H)opt R (L/H)opt R (L/H)opt R

e = 0.50 4.70 0.496 5.89 0.394 7.99 0.29
e = 0.55 5.01 0.469 6.33 0.372 8.58 0.27
e = 0.60 5.38 0.446 6.76 0.354 9.16 0.26
e = 0.65 5.73 0.426 7.21 0.338 9.77 0.24
e = 0.70 5.89 0.402 7.42 0.319 10.05 0.23
e = 0.75 6.29 0.389 7.91 0.309 10.73 0.22
e = 0.80 6.74 0.379 8.48 0.300 11.50 0.22
e = 0.85 7.29 0.372 9.18 0.295 12.45 0.21
e = 0.90 8.08 0.371 10.18 0.294 13.82 0.21

e = 0.95 9.69 0.385 12.20 0.306 16.55 0.22
0.50 and 0.95, and ks = 100 W/m K. It is found that, when
e is fixed and P is increased, the optimal L/H increases and
the overall thermal resistance decreases. Once again, the
optimal e does not depend on P.

5.2. Optimal cell number along sandwich height

In this section, the optimal cell number NH along the
height of a cellular sandwich having square cells (Fig. 1a)
is discussed. Again, the coolant considered is air.
ls and selected values of pumping power and porosity e, with H = 0.012 m,

P = 1.0 W P = 2.0 W P = 5.0 W

(L/H)opt R (L/H)opt R (L/H)opt R

0 10.06 0.230 12.68 0.183 17.21 0.135
4 10.80 0.218 13.61 0.173 18.46 0.127
1 11.55 0.207 14.54 0.164 19.73 0.121
9 12.31 0.198 15.51 0.157 21.04 0.116
5 12.67 0.187 15.96 0.148 21.66 0.109
8 13.52 0.181 17.02 0.143 23.11 0.106
1 14.49 0.176 18.25 0.140 24.76 0.103
7 15.68 0.173 19.76 0.137 26.81 0.101
6 17.41 0.172 21.92 0.136 29.76 0.100

5 20.85 0.179 26.27 0.142 35.65 0.105
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Fig. 8. Optimum cell number NH and corresponding overall thermal resistance for square cells and selected values of porosity e and solid conductivity ks,
with H = 0.012 m, W = 5H, P = 0.5 W and: (a) L = 5H; (b) L = 10H; (c) L = 15H; the working fluid is air (Pr ¼ 0:74).
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Fig. 9. Optimum cell number NH and corresponding overall thermal
resistance for square cells and selected values of heat sink width W and
porosity e, with H = 0.012 m, L = 10H, P = 0.5 W and ks = 100 W/m K;
the working fluid is air (Pr ¼ 0:74).
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In Fig. 8, with the overall dimensions (H = 0.012 m,
W = 5H and L ¼ 5H ; 10H or 15H ) and pumping power
(P = 0.5 W) predefined, the variations of optimal NH and
the corresponding overall thermal resistance with different
selections of e and ks are presented. Note that when NH is
larger than 12 for H = 0.012 m, the cell size drops below
1.0 mm, making the fabrication of the cellular material
using traditional processing technology impractical. In this
case, the above model is assumed to be no longer feasible;
the corresponding domains are marked as ‘unfeasible
domain’.

Fig. 8 demonstrates that both the optimal NH and the
overall thermal resistance decrease as ks increases. When
ks is larger than 1000 W/m K, both the optimal NH and
overall thermal resistance approach those corresponding
to the limit ks ?1. This implies that, with the fin analogy
model included, the analysis of Section 3.2.2 covers that of
Section 3.2.1 as a special case. In small and medium ks

ranges (up to 1000 W/m K), an optimal e exists, which
increases with ks when L is fixed; on the other hand, for
a finite ks, the optimal e increases slightly with L. This, once
again, highlights the important role of coupled conduc-
tion–convection mechanism (see Section 5.1).
With both the overall height and length of the sandwich
(H = 0.012 m, L = 10H) and the pumping power (P =
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0.5 W) fixed, the variation of optimal NH and correspond-
ing overall thermal resistance with different selections of
sandwich width W are shown in Fig. 9. Here, e varies
between 0.50 and 0.95, and ks = 100 W/m K. Generally,
with e fixed, both the optimal NH and the overall thermal
resistance decreases with increasing W. With the ratios
W/H = 5 and L/H = 10 fixed and pumping power P =
0.5 W, Fig. 10 shows the dependence of optimal NH and
corresponding overall thermal resistance on sandwich
height H. The optimal NH increases and the overall thermal
resistance decrease with increasing H. The influence of both
W and H on optimal e is weak.

Finally, the influence of pumping power on optimal NH

and overall thermal resistance is given in Fig. 11. As the
pumping power is increased, the optimal NH increases
while the overall thermal resistance decreases; meanwhile,
the optimal e decreases.
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Fig. 10. Optimum cell number NH and corresponding overall thermal
resistance for square cells and selected values of heat sink height H and
porosity e, with W = 5H, L = 10H, P = 0.5 W and ks = 100 W/m K; the
working fluid is air (Pr ¼ 0:74).
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Fig. 11. Optimum cell number NH and corresponding overall thermal
resistance for square cells and selected values of pumping power and
porosity e, with H = 0.012 m, W = 5H, L = 10H and ks = 100 W/m K; the
working fluid is air (Pr ¼ 0:74).
5.3. Different fluids

In this section, water is used in lieu of air as the coolant;
the properties of both are listed in Table 1. Fig. 12 plots the
optimal L and overall thermal resistance as functions of
cell number NH and porosity e for square cells, with
H = 0.012 m, W = 5H, ks = 1000 W/m K and P = 0.5 W.
In comparison with Fig. 7d where all the other conditions
are the same except that the coolant is air, it is found that
the optimal L/H is much larger whereas the optimal NH (e
fixed) and optimal e (NH fixed) are smaller; and, what’s
more, the overall thermal resistance is two orders smaller.
The kinematic viscosity and thermal diffusivity of water
are smaller than those of air, implying that the developing
regimes for both velocity and thermal fields are larger in
water flow, and hence the optimal heat sink length L is lar-
ger in water cooling. Furthermore, as the thermal diffusiv-
ity of water is two orders of magnitude smaller than that of
air whilst its kinematic viscosity is only one order of mag-
nitude smaller (i.e., the Pr number of water is one order of
magnitude larger), the convective heat transfer coefficient
directly related to the temperature gradient adjacent to cell
walls is much higher in water cooling. Consequently, the
comparative conductive resistance corresponding to the
maximum objective function happens in a larger cell-wall
thickness regime (see Section 5.1); in other words, smaller
NH for a finite e or smaller e for a finite NH.
5.4. Different cell topologies

We have hereto only considered the optimization of
sandwich heat sinks having square cells. To explore the
influence of cell topology on the heat dissipation capability
of the sandwich, in Fig. 13, the optimal geometric param-
eters and overall thermal resistance for equilateral triangu-
lar cells (Fig. 1d) are plotted. The working fluid is air.
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Fig. 13. (a) Optimum heat sink length L; (b) optimum cell number NH; and corresponding overall thermal resistance for triangular cells and selected
values of porosity e and solid conductivity ks; the working fluid is air (Pr ¼ 0:74).
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Comparing Fig. 13a with Fig. 7c, where all the other con-
ditions are identical except that the cell shapes are different,
we find that for 2D cellular structures having the same
porosity and NH, those with triangular cells have smaller
optimal overall length than those with square cells. Simi-
larly, comparing Figs. 13b and 11b, we find that for cellular
structures having the same overall volume, those with tri-
angular cells have smaller optimal cell number along the
height than those with square cells, leading to fabrication
advantages. Therefore, the results of Fig. 13a and b show
cellular sandwich heat sinks with triangular cells are ther-
mally superior. Mechanically, triangular cells also have
obvious advantage over square cells, as demonstrated by
Gu et al. [4].

6. Conclusions

By integrating the fin analogy model into the intersec-
tion-of-asymptotes method, the structure of a 2D cellular
metallic sandwich heat sink cooled by laminar forced
convection has been optimized for maximum thermal
performance, subjected to fixed pumping power. CFD
(FLUENTTM) calculations were used to check the accuracy
and reliability of theoretical model predictions. For a given
pumping power and a certain Prandtl number (coolant),
the heat sink has an optimal overall length if its cross-sec-
tional topology is specified a priori, or optimal cross-sec-
tional topology if its overall dimensions are predefined.
The optimal cross-sectional topology of the heat sink is
achieved when its conductive and convective thermal resis-
tances are comparative. Various parameters that may affect
the optimally designed sandwich structure were discussed,
including overall structural dimensions, cell shape, pump-
ing power, solid conductivity, and coolant properties
(water versus air). Cellular sandwich heat sinks having tri-
angular cells are found to be superior to square cells, both
thermally and mechanically.
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